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Republic of Germany 
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Abstract. The configurationally averaged zero-temperature DC conductance of weakly dis- 
ordered systems of finite width is calculated using the coherent-potential approximation. 
There is no smooth transition from the quantised quasi-ballistic regime at low disorder to 
the structureless conductance for larger disorder. Instead the conductance oscillates as a 
function of the Fermi energy in the intermediate region. The perturbation theory agrees well 
with the numerical results obtained previously. 

1. Introduction 

Recent transport experiments on small metallic systems at low temperatures have 
provided a number of new and interesting phenomena that can be assigned to the 
coherence of the quantum mechanical states of the electrons. One of these phenomena 
consists of the ‘universal conductance fluctuations’ in the diffusive regime of impure 
metals (for a review see [l]). These fluctuations are of the order of e2 /h  and are 
independent of the geometry and of the microscopic nature of the sample. On the 
contrary, in the ballistic regime where the elastic mean free path 1 of the electrons is at 
least comparable with or even much greater than the geometrical dimensions of the 
system, the low-temperature DC conductance r(0) shows well defined plateaux as a 
function of the width of the system and the magnetic field, the plateau values being 
integer multiples of e2/h [2]. The quantised behaviour of the conductance was explained 
as a consequence of the quantisation of the transverse components of the wavevectors 
of the electrons in a narrow constriction between two wide conducting regions [3]. 
Explicit theoretical calculations [4-6] for narrow quasi-one-dimensional (quasi-iD) sys- 
tems, (width M )  have confirmed the exact quantisation that is independent of the length 
L of the system and of the specific form of the confining potential. The conditions for 
quantisation in narrow constrictions of various shapes have been investigated by several 
researchers [7-lo]. 

Having in mind the special features of r in the two asymptotic regions I % L and I 4 
L ,  one can ask what its behaviour in the intermediate case is. Our recent numerical 
calculations [6] showed that the configurationally averaged conductance of weakly 
t Present address: Physikalisch-Technische Bundesanstalt, Bundesallee 100, 3300 Braunschweig, Federal 
Republic of Germany. 
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Figure 1. Conductance in units of e2/h  as a function of the Fermi energy in units of V ,  the 
off-diagonal part of the Hamiltonian. (a) Results of numerical calculations [6] for M = 15, 
L = 100, W = 0.4V. The average conductance (several hundreds of samples) is shown as a 
full line. The RMS deviations are indicated by vertical lines. ( b )  Result of the CPA calculation 
for the same parameters. 

disordered systems of finite width is still quantised, the plateau values being approxi- 
mately equidistant, and the height of the steps exceeds the RMS deviation of I-. However, 
the steps are smoothed by the disorder, and their height is smaller than e2/h. In addition, 
a remarkable decrease in the conductance just below any step was observed (figure 
l(a)). We have interpreted this effect as a result of a disorder-induced hybridisation 
of the sub-bands. One should also be able to describe these ‘anti-resonances’ using 
perturbation theory, in order to gain better insight into the underlying physics. 

This is what we want to achieve in this paper. We shall use a coherent-potential 
approximation (CPA) technique [ll] for the description of tunnelling through a dis- 
ordered barrier (see also [12]), and apply it to our model for the transport in systems of 
finite widths. We shall be able to explain in more detail the origin of the anti-resonances, 
and to describe the non-trivial transition between the quantised and the smooth behav- 
iour of the conductance when the disorder is increased. 

2. Coherent-potential approximation for the conductance 

We consider a quasi-iD system which consists of a disordered part of the length L and 
of two perfectly conducting infinite leads connected to its ends. We want to calculate the 
averaged conductance, assuming that, if an infinitesimal voltage is applied to the system, 
the electric field is non-zero only in its finite part involving disorder. We call this part 
the sample. 

The DC conductance is [5,6,13,14] 

r = -(h/8n2L2) Tr[J(Sampie) AG(EF) hG(E,)] (1) 
where J(sampie) denotes the operator of the current density spatially averaged over the 
part of the system with a non-zero electric field. We take the field as constant within the 
sample because the DC response depends only on the total voltage and not on the 
distribution of the field [6,14,15]. G’(E) = ( E  * io - H)-’ are the one-particle Green 
functions, and AG = G+ - G-. 
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To be specific, we take a square lattice M lattice spacings wide and use a tight-binding 
representation of the Hamiltonian 

and of the current operator 

M 
.I(’) = (IZm)(l - lml - 11 - lm)(Iml). 

m = l  
(4) 

Here {Ilm)} is a complete set of orthonormal states associated with the lattice sites. The 
stochastic potential is non-zero within the sample (1 s 1 s L )  only. It is represented by 
the random site energies E[,,,. 

We transform equation (1) into a form more convenient for the averaging. First we 
use the current conservation expressed by an operator identity 

to avoid the summation involved in equation (4): 

Then, using the sub-band representation {IZp)} and the multiplicative form of the matrix 
elements of the Green function in the one-dimensional sub-bands, we obtain 

where 

M 

u = l  

and v b  is the Fermi velocity in the pth sub-band. Equation (7) is simply an invariant 
transcription of the multi-channel conductance formula [13, 141. 

The evaluation of the configurationally averaged conductance equation (7) within 
the CPA [ll] consists of two steps. Firstly, the averaged one-particle Green function 
(G(z)) is constructed by replacing the random part V of the Hamiltonian equation ( 2 )  
by a self-energy operator E(z) which is diagonal in the site representation. In the weak- 
disorder limit when the CPA reduces to the self-consistent Born approximation (SCBA), 
the matrix elements of the self-energy operator are 

o~,(z) = ~ ~ ( h l G ( ~ ) l I m )  (9) 

with w2 = ( E L ) .  Because of the inhomogeneity in the 1 direction due to the leads, alm(z) 
depends on the layer index 1. It does not depend on m if we use, for simplicity, the 
periodic boundary condition in the transverse direction, because the averaging then 
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restores the equivalence of all sites within a layer. Then (G(z)) 
ID-sub-band representation. We define 

G(z)  is diagonal in the 

M 

(10) 
2nipm 

m = l  

so that 
< M  

The operators C ( l )  and OL) in equation 

(11) 

(7) are non-random quantities so that the 
averaging of the conductance means the averaging of the direct product of two Green 
functions. Following [ll], we denote 

K = (G+(EF)dL)G- (EF)). (12) 

The averaging of the product equation (12) cannot be reduced to replacing V by Z ( z ) .  
Doing this, i.e. averaging the two Green functions separately, we obtain only the 
coherent part of K ,  i.e. 

Kc = G+(E,)c(~)G- (EF) (13) 

and of the conductance, i.e. 

The weak-disorder limit of the full set of the CPA equations for K (equations (49) and 
(50) in [ll]) consistent with the approximation in equation (9) reads [ l l ,  121 

L M  

K = G+(EF) C(L)  + I: Ilm) w2(l~~K~lm)(l~~) G- (EF). (15) ( I = 1  m = l  

Because of the periodic boundary conditions in the m direction the diagonal elements 
of K do not depend on m: (ImlKIlm) = Kl, Rewriting equation (15) in the sub-band 
representation, we obtain a matrix equation for KI: 

L 

K ,  - x w ~ A ~ , ~ ,  K I t  = K? (16) 
I' = 1 

where the matrix A consists of the elements [12] 

Substituting the solution of equation (16) into equation (15), we obtain the final CPA 
expression for the averaged conductance: 

r = (e2/h) Tr(C(OK) = Tc + rv. (18) 
The incoherent part Tv of the conductance ('vertex correction') is [12] 

with 
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Both Rl and Ll contain the contributions of the ID sub-bands in a sum. Therefore Tv, as 
well as Tc, can be uniquely decomposed into contributions corresponding to the electron 
transmission from one sub-band on the left, p ,  to another one on the right, p ’ .  These 
individual contributions are just the averaged transmission probabilities appearing in 
the multi-channel conductance formula [ 161. 

3. Results 

Equations (10)-(21) can be evaluated straightforwardly. We assume that the random 
atomic levels are distributed uniformly within the interval (-W/2, W/2) so that a 
direct comparison with the results of the numerical calculations [6] is possible. The 
second moment of the distribution function P ( E )  is then w 2  = W2/12. The higher 
moments of P ( E )  do not appear in the SCBA equations (11) and (12), derived for the case 
of weak disorder, but they define the validity range of the approximation. In the 
particular case of the box distribution the SCBA gives almost the same results as the full 
CPA even for moderately strong disorder, as we shall see shortly. 

To illustrate the behaviour of the averaged conductance of the narrow disordered 
channel, we take first M = 15, L = 100, W = 0.4V. Figure 1 shows the dependence of r 
on the Fermi energy. 

There is a remarkably good agreement between the ‘exact’ result of the numerical 
calculation (figure l(a)) and the SCBA (figure l(b)). In particular, the ‘dips’ separating 
the ‘plateaux’ are clearly resolved. This indicates that the anti-resonances reflect a basic 
mean-field property of the narrow weakly disordered channels. The question is whether 
or not it is a density-of-states (DOS) effect. 

The DOS has a series of ID van Hove singularities at the edges of the sub-bands for 
vanishing disorder, W = 0. They are smoothed to a certain degree but are still present 
for W # 0 if the disorder is not too large, i.e. W 4V, the width of the unperturbed sub- 
bands. There is no indication of an anti-resonance at the energy of the onset of a 
new sub-band in the DOS as can be seen in figure 2. Thus the anti-resonances in the 
conductance cannot be a DOS effect in the usual sense and must result from the energy 
dependence of the mobility. 

The lifetime of the carriers is inversely proportional to the imaginary part of the self- 
energy. This quantity has, according to (9), the same structure as the DOS. It means that 
the mobility of the electrons, and correspondingly also the conductance, is strongly 
reduced whenever the Fermi energy approaches the edge of a new sub-band. The 
underlying physics is simple; the scattering cross section for the electron is proportional 
to the number of available states into which it can be scattered by the disorder, so that 
the energy dependence of the conductance involves a ‘negative’ DOS. This can be seen 
more explicitly if we look at the sub-band contributions to the conductance: 

Y 

Figure 2(b) shows the contribution of the lowest sub-band as a function of the Fermi 
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Figure 2. (a )  Average density of states in arbitrary 
units and ( b )  conductance in units of e2/h  of the 
lowest sub-band as a function of the Fermi energy 
in units of V, the off-diagonal part of the Ham- 
iltonian. The parameters are M = 15, W = 0.4V. 
The corresponding ID results are shown as dotted 
lines. 

Energy 
Figure 3. Average conductance as obtained from 
the CPA approach in units if e2/h as a function of 
the Fermi energy in units of V for M = 99, W = 
0.1V (curve A), W = 0 . W  (curve B), and W =  
1V (curve C). For comparison the corresponding 
result for M = 2000 is shown as a dotted line for 
curve B. 

energy and, for comparison, also the smooth conductance corresponding to M = 1. A 
more detailed discussion of the role of the non-diagonal processes (cf equation (19)) will 
be given elsewhere [ 151. 

In order to be closer to the experimental situation we have also studied the con- 
ductance of wider channels with only a few lowest channels occupied. For realistic values 
of M ( M  -- lo3) the sub-band offsets become so small that only the effects of rather weak 
randomness can be visualised without destroying the conductance quantisation. Figure 
3 summarises the results for M = 99 for W = 0.1V (curve A), W = 0.5V (curve B) and 
W = 1V (curve C). In the first case, r is still well quantised although the steps are 
rounded. The anti-resonances are extremely narrow, such that they cannot be resolved 
energetically. In the intermediate case the disorder is strong enough to destroy the 
plateaux. The anti-resonances survive; their width becomes comparable with the dis- 
tance between successive sub-band edges. As a result the conductance shows strong 
oscillations as a function of the Fermi energy. The dips mark the positions of the sub- 
band edges. For comparison, we have also shown the result for M = 2000 (rescaled) 
where the transverse quantisation becomes unimportant, and r increases monotonically 
with increasing Fermi energy, as in the 2~ diffusive regime. In the limit of strong disorder 
(figure 3, curve C) almost all the structure in r has vanished. 

4. Conclusion 

It should be possible to observe the disorder-induced conductance oscillations in samples 
and at temperatures where the quantised behaviour is seen. By careful ion bom- 
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bardment, one can damage the samples weakly. It is clear that the disorder-induced 
oscillatory behaviour of r should also be observed when the width of the system is 
changed, or when a magnetic field is applied. We expect that oscillatory behaviour of 
the average of r will be observed for a given sample since the expected statistical 
fluctuations will be much smaller than e2/h (universal conductance fluctuations [l], of 
the order of unity on the scale of figure 3). 
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